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Abstract. The existence of an infinite set of conserved currents in completely integrable classical
models, including chiral and Toda models as well as the KP and self-dual Yang–Mills equations,
is traced back to a simple construction of an infinite chain of closed (respectively, covariantly
constant) 1-forms in a (gauged) bi-differential calculus. The latter consists of a differential algebra
on which two differential maps act. In a gauged bi-differential calculus these maps are extended
to flat covariant derivatives.

1. Introduction

Soliton equations and other completely integrable models are distinguished by the existence
of an infinite set of conservation laws. In particular, for two-dimensional (principal) chiral
or σ -models an infinite set of nonlocal conserved currents have been found [1] and later a
simple iterative construction has been presented [2]. The latter construction was formulated
in terms of differential forms and then generalized to noncommutative differential calculi on
commutative algebras by the present authors [3, 4], and moreover to differential calculi on
noncommutative algebras [5]. As a particular example, this generalization includes the case
of the nonlinear Toda lattice and the corresponding nonlocal conserved charges coincide with
those which had been obtained earlier in a different way [6]. The question then arose whether
other soliton models, like KdV, also fit into this scheme. In this work we present a somewhat
radical abstraction of the above-mentioned iterative construction of conserved currents for
chiral models which indeed applies to many of the known soliton equations and integrable
models. It severely deviates, however, from our previous approach [3, 4] which made use of
a generalized Hodge operator on noncommutative differential calculi. Our present approach
is based on differential calculi with two differential maps (which are analogues of the exterior
derivative of the differential calculus on manifolds). We are thus dealing withbi-differential
calculi, a structure which we introduce in section 2. Section 3 contains as an example a
generalization of Plebanski’s first heavenly equation [7,8]. Most interesting examples require
a ‘gauged bi-differential calculus’ which we consider in section 4. Several integrable models
which fit into this framework are presented in section 5. Some concluding remarks are collected
in section 6.
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2. Bi-differential calculi and an iterative construction of closed forms

LetA be an associative algebra†. Agraded algebra overA is aN0-graded associative algebra
�(A) = ⊕r>0�

r(A) where�0(A) = A. Furthermore, we assume that�(A) has a unit 1I
such that 1Iw = w1I = w for allw ∈ �(A). A differential calculus(�(A), d) overA consists
of a graded algebra�(A) overA and a linear map d :�r(A)→ �r+1(A) with the properties

d2 = 0 (2.1)

d(ww′) = (dw)w′ + (−1)rw dw′ (2.2)

wherew ∈ �r(A) andw′ ∈ �(A). The identity 1I1I= 1I then implies d1I= 0. A triple
(�(A), d, δ) consisting of a graded algebra�(A) overA and two maps d, δ : �r(A) →
�r+1(A) with the above properties and

δd + dδ = 0 (2.3)

we call abi-differential calculus.

Example. The following sets up a (somewhat restricted) framework for constructing bi-
differential calculi. All the examples which we encounter in the following sections actually
fit into this scheme. Letξµ, µ = 1, . . . , n, generate�1(A) as a leftA-module. This requires
commutation rules forξµ and the elements ofA. Assumingξµξν + ξνξµ = 0, products of the
ξµ then generate�(A) as a leftA-module. LetMµ,Nν be derivationsA→ A. We define

df = (Mµf )ξ
µ δf = (Nµf )ξµ (2.4)

and

d(f ξµ1 . . . ξµr ) = (df )ξµ1 . . . ξµr δ(f ξµ1 . . . ξµr ) = (δf )ξµ1 . . . ξµr (2.5)

(r = 1, . . . , n). Then we have

d2 = 0⇐⇒ [Mµ,Mν ] = 0 (2.6)

δ2 = 0⇐⇒ [Nµ,Nν ] = 0 (2.7)

dδ + δ d = 0⇐⇒ [Mµ,Nν ] = [Mν,Nµ]. (2.8)

Up to this point we have not had to specify the commutation rules between theξµ and the
elements ofA. The graded Leibniz rule (2.2) holds, in particular, if [ξµ, f ] = 0 for all f ∈ A
andµ = 1, . . . , n.

Let(�(A), d, δ)be a bi-differential calculus such that, for somes > 1, thesth cohomology
Hs
δ (�(A)) is trivial, so that allδ-closeds-forms areδ-exact. Suppose there is a (nonvanishing)

χ(0) ∈ �s−1(A) with

δχ(0) = 0. (2.9)

Let us define

J (1) = dχ(0). (2.10)

Then

δJ (1) = −dδχ(0) = 0 (2.11)

so that

J (1) = δχ(1) (2.12)

† We consider algebras overR orC. A linear map is then linear overR, respectivelyC.
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Figure 1. The infinite tower ofδ-closeds-formsJ (m).

with someχ(1) ∈ �s−1(A). Now letJ (m) be anys-form which satisfies

δJ (m) = 0 J (m) = dχ(m−1). (2.13)

Then

J (m) = δχ(m) (2.14)

with someχ(m) ∈ �s−1(A). Hence

J (m+1) = dχ(m) (2.15)

is δ-closed:

δJ (m+1) = −dδχ(m) = −dJ (m) = −d2χ(m−1) = 0. (2.16)

In this way we obtain an infinite tower† ofδ-closeds-formsJ (m) and elementsχ(m) ∈ �s−1(A)
satisfying

δχ(m+1) = dχ(m) (2.17)

(see figure 1).
Introducing‡

χ =
∞∑
m=0

λmχ(m) (2.18)

with a parameterλ, the set of equations (2.17) implies

δχ = λ dχ. (2.19)

Conversely, if this equation holds for allλ, we recover (2.17).

Remarks.

(1) Letχ(0) ∈ �s−1(A), s > 1, such thatχ(0) = δα with someα ∈ �s−2(A). This leads to
J (1) = dχ(0) = dδα = −δ dα and thusχ(1) = −dα (up to addition of someβ ∈ �s−1(A)
with δβ = 0, see the following remark). HenceJ (2) = 0, and the construction ofδ-
closeds-forms breaks down at the levelm = 2. In order to have a chance that the
iteration procedure produces something nontrivial at arbitrarily high levelsm, it is therefore
necessary that the cohomologyHs−1

δ (�(A)) is not trivial and the iteration procedure must
start with someχ(0) ∈ �s−1(A) which isδ-closed, but notδ-exact.

† Of course, in certain examples this construction may lead to something trivial. This happens, in particular, if d and
δ are linearly dependent, so that the bi-differential calculus reduces to a differential calculus. See also the first remark
below.
‡ In general, we can only expectχ to exist as a formal power series inλ.
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(2) δJ (m) = 0, m > 0, determinesχ(m) via (2.14) only up to addition of someχ(0)m with
δχ(0)m = 0. Butχ(0)m then plays the same role asχ(0)! Hence, this freedom corresponds
to a new chain starting at themth level. If there is only a single linearly independent
χ(0) ∈ �s−1(A) with δχ(0) = 0 (butχ(0) not δ-exact), this means thatJ (m) is determined
only up to addition of some linear combination of theJ (q) with 16 q < m. In this case,
we are losing nothing by simply ignoring the above freedom in the choice ofχ(m). If there
are several linearly independent choices forχ(0) (with δχ(0) = 0, butχ(0) not δ-exact),
we have to elaborate the sequencesJ (m),m > 0, for all of these choices (respectively, for
their general linear combination). Again, the freedom in the choice ofχ(m),m > 0, then
does not lead to anything new.

(3) In the definition of a bi-differential calculus we have assumed that both differential
maps d andδ act on the same grading of�(A). The above iteration procedure works,
however, as well if they operate on different gradings. Then we have to start with a
bi-graded algebra�(A) = ⊕r>0,s>0�

r,s(A) with �0,0(A) = A, and differential maps
d :�r,s(A)→ �r+1,s(A), δ : �r,s(A)→ �r,s+1(A) satisfying (2.3).

(4) In classical differential geometry, bi-differential calculi appeared under the namedouble
complexor bicomplex (see [9], for example). In particular, given a differentiable
fibre bundle, a splitting of the exterior derivative on the bundle space into vertical and
horizontal† parts leads to a bicomplex. In this way, bicomplexes also appeared in the
context of symmetries and conservation laws of Euler–Lagrange systems (see [10], for
example). The way in which this paper relates bicomplexes and conservation laws,
however, is different and seems not to have been anticipated in the literature. In general,
the maps d, δ of a bicomplex are not required to be (graded) derivations. In fact, the above
iterative construction ofδ-closed forms does not make use of the (graded) Leibniz rule.

(5) The condition (2.9) can be weakened to dδχ(0) = 0. SettingJ (0) = δχ(0), this somehow
improves the left end of figure 1.

(6) If Hs
δ (�(A)) 6= {0}, the iterative construction may still work, for someχ(0), though

perhaps only up to some levelm where we encounter aδ-closed formJ (m) which is not
δ-exact.

In this work we will concentrate on the cases = 1 whereχ ∈ A. Sinces-form conservation
laws with s > 1 are of some interest in the theory of differential systems and physical field
theories (see [11] and the references therein), we believe that the above generalization has
some potential.

3. Example: a generalization of Plebanski’s first heavenly equation

Let A be the algebra of smooth functions of coordinatesxµ, µ = 1, . . . ,2n, and ya,
a = 1, . . . ,2m, and let∂µ and∂a denote the partial derivatives with respect toxµ andya,
respectively. We define

δf = (∂µf )δxµ (3.1)

where theδxµ are ordinary differentials, which commute with functions, and

df = (Mµf )δx
µ (3.2)

where

Mµ = Ma
µ∂a (3.3)

† Horizontal with respect to a (local) cross section or flat connection.



Bi-differential calculi and integrable models 961

with functionsMa
µ. Now (δ d + dδ)f = 0 (for all f ∈ A) meansδ(Mµδx

µ) = 0 and thus

Ma
µ = ∂µWa (3.4)

with Wa ∈ A. Furthermore, d2 = 0 is satisfied if [Mµ,Mν ] = 0 which leads to

(∂µW
a)(∂ν∂aW

b)− (∂νWa)(∂µ∂aW
b) = 0. (3.5)

Let us now consider the special case where

Wa = ωab∂b� (3.6)

with a function� and constantsωab = −ωba†. Then

ωacωbd∂d{(∂µ∂c�)(∂ν∂a�)} = 0. (3.7)

If (ωab) is invertible, this leads to

ωab(∂µ∂a�)(∂ν∂b�) = ω̃µν (3.8)

whereω̃µν are arbitrary functions ofxµ, satisfyingω̃µν = −ω̃νµ. Furthermore, the 2-form

ω̃ = 1
2ω̃µνδx

µδxν (3.9)

is δ-closed. Let us takẽωµν to be invertible. Then, by the Darboux theorem, there are local
coordinatesxµ such that

(ω̃µν) =
(

0 In
−In 0

)
(3.10)

whereIn is then× n unit matrix. (3.8) generalizes Plebanski’sfirst heavenly equation[7] to
which it reduces form = n = 1:

�xp�tq −�xq�tp = 1 (3.11)

wherexµ = (t, x) andya = (q, p). This is a gauge-reduced form of the self-dual gravity
equation [7]‡. The above generalization of Plebanski’s equation has appeared already in [8].

Forf, g ∈ A we introduce the Poisson bracket

{f, g} = ωab(∂af )(∂bg). (3.12)

Then

df = {f, δ�} {δ�, δ�} = 2ω̃. (3.13)

The initial conditionδχ(0) = 0 for the iterative construction ofδ-closed 1-forms in the
preceding section means thatχ(0) ∈ A does not depend onxµ, henceχ(0) = χ(0)(ya).

From (2.18) and (2.19) we get

J (m) = δχ(m) = {χ(m−1), δ�}. (3.14)

In particular, this leads to

χ(1) = {χ(0), �} (3.15)

(modulo addition of a function which only depends onya), so that

J (2) = dχ(1) = {{χ(0), �}, δ�}. (3.16)

Remark. Let εµν be constant and antisymmetric. We defineJ̃ (m)µ := εµνJ (m)ν where
J (m) = J (m)µ δxµ. Now δJ (m) = 0 becomes∂µJ̃ (m)µ = 0 which is a familiar form of a
conservation law. See also [12,13] for related work.

† If ωab has an inverseωab, the latter defines a symplectic 2-form andW = Wa∂a is the Hamiltonian vector field
associated with the Hamiltonian�.
‡ A solution� determines a Riemannian metric with line element ds2 = �tp dt dp + �tq dt dq + �xp dx dp +
�xq dx dq.
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4. Gauging bi-differential calculi

Let (�(A), d, δ) be a bi-differential calculus, andA,B twoN ×N -matrices of 1-forms (i.e.,
the entries are elements of�1(A)). We introduce two operators (or covariant derivatives)

Dd = d +A Dδ = δ +B (4.1)

which act from the left onN ×N -matrices with entries in�(A). The latter form a graded left
A-moduleM =⊕r>0Mr . Then

D2
d = 0⇐⇒ Fd[A] = dA +AA = 0 (4.2)

D2
δ = 0⇐⇒ Fδ[B] = δB +BB = 0 (4.3)

DdDδ +DδDd = 0⇐⇒ dB + δA +BA +AB = 0. (4.4)

These conditions are sufficient for a generalization of the construction presented in section 2.
If they are satisfied, we speak of agauged bi-differential calculus.

Suppose there is a (nonvanishing)χ(0) ∈Ms−1 with

Dδχ
(0) = 0. (4.5)

Then

J (1) = Ddχ
(0) (4.6)

isDδ-closed, i.e.

DδJ
(1) = −DdDδχ

(0) = 0. (4.7)

If everyDδ-closed element ofMs isDδ-exact, then

J (1) = Dδχ
(1) (4.8)

with someχ(1) ∈Ms−1. Now letJ (m) ∈Ms satisfy

DδJ
(m) = 0 J (m) = Ddχ

(m−1). (4.9)

Then

J (m) = Dδχ
(m) (4.10)

with someχ(m) ∈ Ms−1 (which is determined only up to addition of someβ ∈ Ms−1 with
Dδβ = 0), and

J (m+1) = Ddχ
(m) (4.11)

is alsoDδ-closed:

DδJ
(m+1) = −DdDδχ

(m) = −DdJ
(m) = −D2

dχ
(m−1) = 0. (4.12)

In this way we obtain an infinite tower (see figure 2) ofDδ-closed matricesJ (m) of s-forms
and elementsχ(m) ∈Ms−1 which satisfy

Dδχ
(m+1) = Ddχ

(m). (4.13)

In terms of

χ =
∞∑
m=0

λmχ(m) (4.14)

with a parameterλ, the set of equations (4.13) leads to

Dδχ = λDdχ. (4.15)

Conversely, if the last equation holds for allλ, we recover (4.13).
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Figure 2. The infinite tower ofDδ-closed (matrices of)s-formsJ (m).

Of particular interest is the cases = 1, as we will demonstrate in section 5. The above
procedure works, however, irrespective of this restriction (provided there is aDδ-closeds-form
and the cohomology condition is satisfied). It thus opens new possibilities which still have
to be explored. The remarks in section 2 apply also, with obvious alterations, to the gauged
iteration procedure.

If B = 0, the conditions (4.2)–(4.4) become

Fd[A] = 0 δA = 0. (4.16)

There are two obvious ways to further reduce these equations.

(1) We can solveFd[A] = 0 by setting

A = g−1 dg (4.17)

with an invertibleN ×N matrixg with entries inA. Then the remaining equation reads

δ(g−1 dg) = 0 (4.18)

which resembles the field equation of principal chiral models—see also the following
section.

(2) We can solveδA = 0 via

A = δφ (4.19)

with a matrixφ. Then we are left with the equation

d(δφ) + (δφ)2 = 0. (4.20)

This generalizes the so-called ‘pseudodual chiral models’ (cf [14], see also [15,16]).

5. Gauged bi-differential calculi and integrable models

In this section we present a collection of integrable models which arise from gauged bi-
differential calculi. As a consequence, they possess an infinite tower of ‘conserved currents’
in the sense ofDδ-closed 1-forms. For some well known integrable models, like principal
chiral models, the KP equation and the nonlinear Toda lattice, we show that these reproduce
known sets of conserved currents and conserved charges. Moreover, in section 5.5 we present a
set of equations in 2n dimensions which generalize the four-dimensional self-dual Yang–Mills
equation and which are integrable in the sense of admitting a gauged bi-differential calculus
formulation.
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5.1. Chiral models

(1) LetA = C∞(R2) be the commutative algebra of smooth functions of coordinatest, x, and
δ the ordinary exterior derivative acting on the algebra�(A) of differential forms onR2. Then

δf = fxδx + ftδt ∀f ∈ A (5.1)

wherefx andft denote the partial derivatives off with respect tox andt , respectively. As
a consequence of the Poincaré lemma, everyδ-closed 1-form isδ-exact. An extension of this
differential calculus to a bi-differential calculus is obtained by defining another differential
map d via

df = ftδx + fxδt d(f δx + hδt) = (df )δx + (dh)δt. (5.2)

Indeed, we have

dδf = (fxx − ftt )δtδx = −δ df (5.3)

d2f = (ftx − fxt )δtδx = 0 (5.4)

and d also satisfies the graded Leibniz rule (2.2). NowFd[A] = 0 is solved by

A = g−1 dg = g−1gtδx + g−1gxδt (5.5)

with an invertibleN×N -matrixgwith entries inA. WithB = 0, the remaining condition (4.4)
for a gauged bi-differential calculus isδA = 0 which turns out to be equivalent to the principal
chiral model equation

(g−1gt )t = (g−1gx)x. (5.6)

It has the form of a conservation law. More generally,δJ = 0 for a 1-formJ = J0δt + J1δx

is equivalent to the conservation lawJ1,t = J0,x . HenceQ = ∫
t=const. J is conserved (ifJ0

vanishes sufficiently fast at spatial infinity). From (4.10) we get

J =
∞∑
m=1

λmJ (m) = λDdχ = λ[(χt + g−1gtχ)δx + (χx + g−1gxχ)δt ] (5.7)

andδJ = 0 leads to

(χt + g−1gtχ)t = (χx + g−1gxχ)x. (5.8)

Equation (4.13) takes the form

χt = λ(χx + g−1gxχ) χx = λ(χt + g−1gtχ). (5.9)

Inserting (4.14) withχ(0) = I , theN × N unit matrix†, in the last equation, we obtain the
conserved charges

Q(1) =
∫
t=const.

g−1gtδx (5.10)

Q(2) =
∫
t=const.

(χ
(1)
t + g−1gtχ

(1))δx

=
∫
t=const.

(
g−1gx + g−1gt

∫ x

g−1gtδx
′
)
δx (5.11)

and so forth. In this way one recovers the infinite tower of nonlocal conserved charges for
two-dimensional principal chiral models [2].

† This satisfiesδχ(0) = 0. The most general solution ofδχ(0) = 0 is theN×N matrix where the entries are arbitrary
constants. Instead of theQ obtained from the initial dataχ(0) = I , we then simply getQ multiplied from the right
by this generalN ×N matrix.
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(2) LetA = C∞(R3) with coordinatest, x, y. Regardingx as a parameter, the ordinary
calculus of differential forms on the algebra of smooth functions oft andy induces a differential
calculus(�(A), δ) such that

δf = ftδt + fyδy. (5.12)

Now

df = fxδt + ftδy d(f δt + hδy) = (df )δt + (dh)δy (5.13)

defines a map d satisfying the graded Leibniz rule, d2 = 0 and dδ = −δ d. WithA = g−1 dg
we haveFd[A] = 0, and (withB = 0) the conditionδA = 0 becomes

(g−1gt )t = (g−1gx)y. (5.14)

From δ(dχ + Aχ) = 0 (which is an integrability condition of (4.15)), one obtains the
conservation law

(χt + g−1gtχ)t = (χy)x + (g−1gxχ)y (5.15)

which leads to the conserved quantity

Q =
∫
t=const.

(χt + g−1gtχ)δxδy (5.16)

(assuming thatg−1gx andχy vanish sufficiently fast at spatial infinity). Furthermore, (4.15)
takes the formδχ = λ(d +A)χ which leads to

χt = λ(χx + g−1gxχ) χy = λ(χt + g−1gtχ). (5.17)

Using (4.14) withχ(0) = I , theN ×N unit matrix, we obtain the conserved charges

Q(1) =
∫
t=const.

g−1gtδxδy (5.18)

Q(2) =
∫
t=const.

(
g−1gx + g−1gt

∫ y

g−1gtδy
′
)
δxδy (5.19)

and so forth.

5.2. Toda models

(1) LetA be the algebra of functions oft, k, S, S−1 which are smooth int and a formal power
series in the shift operator

S(f )k = fk+1 (5.20)

and its inverseS−1. k has values inZ and we introduced the notationfk(t, S, S−1) =
f (t, k, S, S−1). Because of the relationsSfk = fk+1S andS−1fk = fk−1S

−1, the algebra
A is noncommutative. We define a bi-differential calculus overA via

δf = ḟ δt + [S, f ]ξ df = [S−1, f ]δt − ḟ ξ (5.21)

where(δt)2 = 0= ξ2, ξδt + δtξ = 0 andḟ = ∂f/∂t . δt andξ commute with all elements of
A. The action ofδ extends to 1-forms via

δ(f δt + hξ) = (δf )δt + (δh)ξ (5.22)

and correspondingly for d. Indeed,

d2f = −(dḟ )ξ + d[S−1, f ]δt = −[S−1, ḟ ]δtξ − [S−1, ḟ ]ξδt = 0 (5.23)

dδf = (dḟ )δt + d[S, f ]ξ = −f̈ ξδt + [S−1, [S, f ]]δtξ

= f̈ δtξ − [S, [S−1, f ]]ξδt = −δ df (5.24)
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and similar calculations demonstrate that the rules of bi-differential calculus are satisfied. Let

A = e−qk deqk = (eqk−1−qk − 1)S−1δt − q̇kξ (5.25)

with a functionqk(t) = q(t, k) andq̇k = ∂qk/∂t . ThenFd[A] = 0 and, using

[S, (eqk−1−qk − 1)S−1] = [S, eqk−1−qk ]S−1 = (eqk−qk+1 − eqk−1−qk )SS−1 (5.26)

we recover fromδA = 0 (thus settingB = 0) the nonlinear Toda lattice equation [17]

q̈k = eqk−1−qk − eqk−qk+1. (5.27)

Equation (4.15) is equivalent to the system

χ̇k = λ(eqk−1−qkχk−1− χk)S−1 (5.28)

χk+1− χk = −λ(χ̇k + q̇kχk)S
−1 (5.29)

which leads to

χk+1− χk = −λq̇kχkS−1 + λ2(χk − eqk−1−qkχk−1)S
−2. (5.30)

Inserting

χk =
∞∑
m=0

λmχ̃
(m)
k S−m (5.31)

with χ̃ (0) = 1 in the last equation leads to

χ̃
(1)
k+1− χ̃ (1)k = −q̇k (5.32)

and

χ̃
(m)
k+1 − χ̃ (m)k = −q̇kχ̃ (m−1)

k + χ̃ (m−2)
k − eqk−1−qk χ̃ (m−2)

k−1 (5.33)

for m > 1. Hence

χ̃
(1)
k = −

k−1∑
j=−∞

q̇j (5.34)

(provided that the infinite sum on the rhs exists) and

χ̃
(m)
k =

k−1∑
j=−∞

(−q̇j χ̃ (m−1)
j + χ̃ (m−2)

j − eqj−1−qj χ̃ (m−2)
j−1 ) (5.35)

for m > 1. In particular,

χ̃
(2)
k =

k−1∑
j=−∞

(−q̇j χ̃ (1)j + 1− eqj−1−qj ) =
k−1∑
j=−∞

j−1∑
l=−∞

q̇j q̇l +
k−1∑
j=−∞

(1− eqj−1−qj ). (5.36)

For a 1-formJ = J0δt + J1Sξ the conditionδJ = 0 readsJ̇1 = S(J0) − J0 = ∂+J0

where the rhs is the discrete forward derivative ofJ0†. The latter equation is a conservation
law. Indeed, for

Q =
∫
t=const.

J =
∞∑

k=−∞
J1k (5.37)

where the last equality defines the integral, we have

d

dt
Q =

∫
t=const.

(∂+J0)Sξ = 0 (5.38)

† Settingχ = ∫ J0 dt (ordinary integration with respect tot), one easily verifies thatδJ = 0 impliesJ = δχ , so that
δ-closed 1-forms areδ-exact.
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if J0k vanishes sufficiently fast fork→±∞. UsingJ (m) = J̃ (m)S−m and (4.10), we find

Q̃(m) =
∫
t=const.

J̃ (m) =
∫
t=const.

δχ̃ (m)

=
∞∑

k=−∞
(−q̇kχ̃ (m−1)

k + χ̃ (m−2)
k − eqk−1−qk χ̃ (m−2)

k−1 ) (5.39)

which, together with (5.35), allows the recursive calculation of the conserved chargesQ̃(m)†.
In particular, we get

−Q̃(1) =
∞∑

k=−∞
q̇k (5.40)

and

1
2(Q̃

(1))2 − Q̃(2) = 1
2

∞∑
k=−∞

q̇2
k +

∞∑
k=−∞

(eqk−1−qk − 1) (5.41)

which are the total momentum and total energy, respectively. Proceeding further with the
iteration, one recovers the higher conserved charges of the Toda lattice as given, for example,
in [6]. For instance, introducingXk = eqk−1−qk we find

Q̃(3) = −
∞∑

k=−∞
q̇k−1Xk −

∞∑
k=−∞

k−1∑
j=−∞

j−1∑
l=−∞

q̇kq̇j q̇l +
∞∑

k=−∞

k−1∑
j=−∞

(q̇j (Xk − 1) + q̇k(Xj − 1))

(5.42)

and after some resummations we obtain the formula

−Q̃(3) + Q̃(1)Q̃(2) − Q̃(1) − 1
3[Q̃(1)]3 =

∞∑
k=−∞

( 1
3 q̇

3
k + q̇k(Xk +Xk+1)). (5.43)

Remark. Sinceδk = Sξ , we have [δk, f ] = (S(f )−f )δk andδf = ḟ δt + (S(f )−f )δk for
functionsf (t, k). Sinceδk does not in general commute with functions, the last two equations
define a noncommutative differential calculus over the commutative algebra of functions on
R× Z [18]. There is an integral naturally associated with this calculus. It satisfies∫

Z
f (t, k)δk =

∞∑
k=−∞

f (t, k).

We refer to [19] for details. See also [3] for a different derivation of the conserved charges for
the Toda lattice in this framework.

(2) A generalization of the previous example is obtained as follows. LetA be the algebra
of functions oft, x, k, S, S−1 which are smooth int andx, and polynomial in the shift operators
S, S−1. Again,k has values inZ. A bi-differential calculus overA is then obtained via

δf = ḟ δt + [S, f ]ξ df = [S−1, f ]δt + f ′ξ (5.44)

wheref ′ = ∂f/∂x. With

A = e−qk deqk = (eqk−1−qk − 1)S−1δt + q ′kξ (5.45)

we haveFd[A] = 0 andδA = 0 becomes the Toda field equation

q̇ ′k = eqk−qk+1 − eqk−1−qk . (5.46)

† By using (5.33) we also havẽQ(m) = χ̃ (m)∞ − χ̃ (m)−∞.
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Alternatively, we can solveδA = 0 by A = δ(uS−1) with a functionu(t, x, k). Then
Fd[A] = 0 reads

u̇′ + (1 + u̇)1u = 0 (5.47)

where1u = S(u) + S−1(u)− 2u. The latter equation has been studied in [20].
(3) LetAbe as in the previous example and consider the bi-differential calculus determined

by

δf = [S−1, f ]τ − f ′ξ df = ḟ τ + [S, f ]ξ. (5.48)

With

A = Xτ + (Y − I )Sξ (5.49)

whereX, Y are matrices with entries inA andI is the unit matrix,δA = 0 leads to

Xk
′ = Yk − Yk−1 (5.50)

andFd[A] = 0 becomes

Ẏk = YkXk+1−XkYk. (5.51)

For x = t , the (transpose of the) last two equations are those of the non-Abelian Toda lattice
explored in [21], for example.

5.3. The KP equation

LetA0 = C∞(R3) be the algebra of smooth functions of coordinatest , x, y, andA the algebra
of formal power series in the partial derivative∂x = ∂/∂x with coefficients inA0. We define
a bi-differential calculus overA via

df = [∂t − ∂3
x , f ]τ + [ 1

2∂y − 1
2∂

2
x , f ]ξ

= (ft − fxxx − 3fxx∂x − 3fx∂
2
x )τ + 1

2(fy − fxx − 2fx∂x)ξ (5.52)

δf = [ 3
2∂y + 3

2∂
2
x , f ]τ + [∂x, f ]ξ = 3

2(fy + fxx + 2fx∂x)τ + fxξ. (5.53)

For a gauge potentialA ∈ �1(A) we solve the equationδA = 0 by

A = δv = 3
2(vy + vxx + 2vx∂x)τ + vxξ (5.54)

with v ∈ A0. ThenFd[A] = 0 takes the form

vxt − 1
4vxxxx + 3vxvxx − 3

4vyy = 0. (5.55)

Differentiation with respect tox and substitutionu = −vx leads to the KP equation

(ut − 1
4uxxx − 3uux)x − 3

4uyy = 0 (5.56)

in the form considered, for example, in [22].
Let us now turn to the conservation laws. First we note that the integrability condition

δDdχ = 0 of (4.15) forχ ∈M can be written in the form of a conservation law,

(χx)t = 3
4(χy + 2vxχ)y + ( 1

4χxxx − 3
2vyχ − 3

2vxχx)x. (5.57)

Note that terms proportional to∂x cancel each other in the evaluation ofδDdχ . Moreover, in
the case under consideration (4.15) consists of the two equations

χx = λ( 1
2χy − 1

2χxx + vxχ − χx∂x) (5.58)

and

χy + χxx + 2χx∂x = λ[ 2
3(χt − χxxx − 3χxx∂x − 3χx∂

2
x ) + vyχ + vxxχ + 2vxχx + 2vxχ∂x ].

(5.59)



Bi-differential calculi and integrable models 969

Inserting

χ =
∞∑
n=0

χn∂
n
x (5.60)

we get

χ0,x = λ

2
(χ0,y − χ0,xx + 2vxχ0) (5.61)

χ0,y + χ0,xx = λ[ 2
3(χ0,t − χ0,xxx) + vyχ0 + vxxχ0 + 2vxχ0,x ]. (5.62)

The transformation

χ0 = eλϕ ϕ =
∞∑
m=0

λmϕ(m) (5.63)

(which setsχ(0)0 = 1) in the first of these equations yields

ϕx = λ

2
(ϕy − ϕxx)− λ

2

2
(ϕx)

2 − u (5.64)

which in turn leads to

ϕ(0)x = −u (5.65)

ϕ(1)x = − 1
2∂
−1
x uy + 1

2ux (5.66)

ϕ(2)x = − 1
2u

2 − 1
4uxx + 1

2uy − 1
4∂
−2
x uyy (5.67)

ϕ(3)x = − 1
2u∂

−1
x uy − 1

4∂
−1
x (u2)y + 1

2(u
2)x − 1

8∂
−3
x uyyy + 3

8∂
−1
x uyy − 3

8uxy + 1
8uxxx (5.68)

and so forth, where∂−1
x formally indicates an integration with respect tox. These are conserved

densities of the KP equation (cf [22]†). Indeed, in terms ofϕ, equation (5.62) reads

ϕt =
[

3

2λ
(ϕ − v)

]
y

+

[
ϕxx +

3

2λ
(ϕ − v)x +

3

2
λ(ϕx)

2

]
x

− 3vxϕx + 3
2(ϕx)

2 + λ2(ϕx)
3.

(5.69)

Differentiation with respect tox now leads to a conservation law forϕx .
We still have to check thatδ-closed 1-forms areδ-exact. δJ = 0 with J = J0τ + J1ξ

meansJ0,x = 3
2(J1,y + J1,xx + 2J1,x∂x). ThenJ = δ(∂−1

x J1).

5.4. The sine–Gordon and Liouville equation

Let A = C∞(R2) be the commutative algebra of smooth functions of coordinatesu andv,
andδ the ordinary exterior derivative acting on the algebra�(A) of differential forms onR2.
Then

δf = fuδu + fvδv ∀f ∈ A (5.70)

wherefu andfv denote the partial derivatives off with respect tou and v, respectively.
Another differential map d is then given by

df = −fuδu + fvδv d(f δu + hδv) = (df )δu + (dh)δv (5.71)

and(�(A), d, δ) becomes a bi-differential calculus. It is convenient to introduce the 1-forms

α = λδu + λ−1δv β = −λδu + λ−1δv (5.72)

† (5.65)–(5.68) correspond to equations (4.15a)–(4.15d) in [22]. (4.15c) and (4.15d) contain misprints, however.
The correct expressions are obtained from the appendix in [22] together with (4.14a)–(4.14c).
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with a parameterλ. They satisfy†

(δf )α = −(df )β (δf )β = −(df )α αβ = 2δuδv. (5.73)

LetXa, a = 1, 2, 3, be a representation ofsl(2):

[X1, X2] = X3 [X1, X3] = X2 [X2, X3] = X1. (5.74)

(1) Now we chooseA = AaXa with

A1 =
(
cos

ϕ

2

)
β A2 = 1

2δϕ A3 = −
(
sin

ϕ

2

)
α. (5.75)

ThenFd[A] = 0 is equivalent to the sine–Gordon equation

ϕuv = sinϕ. (5.76)

Similarly, letB = BaXa where

B1 = −
(
cos

ϕ

2

)
α B2 = 1

2dϕ B3 =
(
sin

ϕ

2

)
β. (5.77)

Again,Fδ[B] = 0 is equivalent to the above sine–Gordon equation. Moreover, (4.4) is satisfied.
Let us now consider the following nonlinear realization ofsl(2):

X̃1 = −2 sin
ψ

2

∂

∂ψ
X̃2 = −2

∂

∂ψ
X̃3 = −2 cos

ψ

2

∂

∂ψ
. (5.78)

To start the iteration procedure of section 4, we need someψ = χ(0) with Dδψ = 0. With
B̃ = −BaX̃a, this condition becomesδψ + B̃ψ = 0, respectively

δψ + dϕ = 2 sin
ψ

2
cos

ϕ

2
α − 2 cos

ψ

2
sin

ϕ

2
β

= 2λ sin
ψ + ϕ

2
δu +

2

λ
sin

ψ − ϕ
2

δv. (5.79)

Acting with δ on this equation leads to

δ dϕ = (δψ + dϕ)

(
cos

ψ

2
cos

ϕ

2
α + sin

ψ

2
sin

ϕ

2
β

)
= 2 sinϕδuδv (5.80)

which is the sine–Gordon equation (5.76) forϕ. In the same way, acting with d on (5.79) leads
to the sine–Gordon equation forψ , i.e.,ψuv = sinψ . Decomposed in the basisδu, δv, (5.79)
becomes

(ψ − ϕ)u = 2λ sin
ψ + ϕ

2
(ψ + ϕ)v = 2

λ
sin

ψ − ϕ
2

(5.81)

which is a well-known B̈acklund transformation for the sine–Gordon equation (see [23], for
example)†.

(2) Now we set

A1 = δϕ A2 = eϕα A3 = eϕβ. (5.82)

ThenFd[A] = 0 withA = AaXa is equivalent to the Liouville equation

ϕuv = e2ϕ. (5.83)

Also Fδ[B] = 0 withB = BaXa and

B1 = dϕ B2 = eϕβ B3 = eϕα (5.84)

† Actually, (5.72) is the most general solution of these equations.
† The sine–Gordon equation also appeared in treatments of theSU(2) andO(3) chiral models [15,24]. Our approach
above is not related to the discussion of the chiral model in section 5.1 in such a way.
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is equivalent to (5.83). Let us now consider the following nonlinear realization ofsl(2):

X̃1 = ∂

∂ψ
X̃2 = coshψ

∂

∂ψ
X̃3 = sinhψ

∂

∂ψ
. (5.85)

With B̃ = −BaX̃a, the equationδψ + B̃ψ = 0 becomes

δψ − dϕ = eϕ(sinhψα + coshψβ). (5.86)

Acting with δ on this equation yields

δdϕ = −eϕ(δψ − dϕ)(coshψα + sinhψβ) = 2e2ϕδuδv (5.87)

which reproduces the Liouville equation (5.83). Acting with d on (5.86) leads to dδψ = 0
and thusψuv = 0. Decomposition of (5.86) yields

(ψ + ϕ)u = −λeϕ−ψ (ψ − ϕ)v = λ−1eϕ+ψ (5.88)

which is a well known B̈acklund transformation for the Liouville equation (cf [23], for
example).

There is a way to construct an infinite set of conserved currents from a given conservation
law (like energy conservation) with the help of the Bäcklund transformation (see [25], for
example). So far we have not been able to establish a more direct realization of such conserved
quantities within our framework.

5.5. Self-dual Yang–Mills equations in2n dimensions

Let (�(A), d) and(�̄(A), d̄) be two differential calculi overA such that there is a bijection
κ : �(A)→ �̄(A) with

κ(ww′) = κ(w)κ(w′) ∀w,w′ ∈ �(A) (5.89)

andκ restricted toA is the identity. Thenδ = κ−1◦ d̄◦κ extends(�(A), d) to a bi-differential
calculus, provided that dδ + δ d = 0 holds.

Now we chooseA as the algebra of smooth functions of coordinatesxµ, µ = 1, . . . , n,
andxµ̄, µ̄ = 1, . . . , n. Let (�̂(A), d̂) denote the ordinary differential calculus overA. We
introduce an invertibleA-linear map? : �̂2(A)→ �̂2(A) via

?(d̂xµ d̂xν) = −d̂xµ d̂xν (5.90)

?(d̂xµ̄ d̂xν̄) = −d̂xµ̄ d̂xν̄ (5.91)

?(d̂xµ d̂xν̄) = κµσ̄ κν̄ρ d̂xρ d̂xσ̄ (5.92)

where(κµν̄) is an invertible matrix of constants with inverse(κν̄µ). Let

Â = Aµ d̂xµ +Bµ̄ d̂xµ̄ (5.93)

be a gauge potential (N ×N -matrix of 1-forms) with curvature

Fd̂[Â] = d̂Â + ÂÂ = 1
2Fµν d̂xµ d̂xν + 1

2Fµ̄ν̄ d̂xµ̄ d̂xν̄ + Fµν̄ d̂xµ d̂xν̄ (5.94)

on which we impose the following generalized self-dual Yang–Mills equation:

Fd̂[Â] = ?Fd̂[Â] (5.95)

which is equivalent to

Fµν = 0= Fµ̄ν̄ Fµρ̄κ
ρ̄
ν = Fνρ̄κρ̄µ. (5.96)

Let (�(A), d) be the differential calculus overA which is obtained from the ordinary
differential calculus by regarding the coordinatesxµ̄ as parameters:

df = (∂µf ) dxµ. (5.97)
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Correspondingly, let(�̄(A), d̄) be the calculus obtained from the ordinary one by regarding
the coordinatesxµ as parameters:

d̄f = (∂µ̄f ) d̄xµ̄. (5.98)

Then�̂(A) is the skew tensor product of�(A) and�̄(A), and

d̂ = d + d̄. (5.99)

Furthermore, we define

δxµ̄ = κµ̄ν dxν = κ−1(d̂xµ̄) (5.100)

and

B = Bµ̄δxµ̄ = κ−1(Bµ̄ d̂xµ̄). (5.101)

Now (5.95) is found to be equivalent to

Fd[A] = 0= Fδ[B] dB + δA +BA +AB = 0 (5.102)

which are the conditions (4.2)–(4.4). By a gauge transformation, we can achieve thatB = 0
and thusDδ = δ. SinceH 1

δ (�(A)) is trivial, the iterative construction ofδ-closed 1-forms in
section 4 works. As a special case we recover the self-dual Yang–Mills equation in four real
dimensions, see below. We have generalized this example to a set of integrable equations in
2n dimensions. Equations of this kind have also been considered in [26].

Example. LetA = C∞(C2). In terms of complex coordinatesy, z with complex conjugates
ȳ, z̄, we introduce a bi-differential calculus via

δf = fȳδȳ + fz̄δz̄ df = fyδz̄− fzδȳ. (5.103)

With A = g−1 dg we haveFd[A] = 0, andδA = 0 takes the form

(g−1gy)ȳ + (g−1gz)z̄ = 0 (5.104)

which is known to be equivalent to the self-dual Yang–Mills equation [27]. Indeed, in this case
the map? defined above coincides with the Euclidean Hodge operator. The construction of
conservation laws in the form given in [2] was carried over to the self-dual Yang–Mills equation
in [28] and is easily recovered in our framework (see also [29] for a different approach).

6. Conclusions

We have shown that, under certain conditions, a gauged bi-differential calculus (which has
two flat covariant derivatives) leads to an infinite set of covariantly constant 1-forms. In
many integrable models, these are realized by conserved currents, as we have demonstrated in
particular for (principal) chiral models, some Toda models, the KP equation and the self-dual
Yang–Mills equation. Other models are obtained via (dimensional) reduction of bi-differential
calculi. For example, the KdV equation is a reduction of the KP equation and there is a
corresponding reduction of the gauged bi-differential calculus which we associated with the
KP equation. Many more examples are expected to fit into this scheme. Moreover, the latter
leads to possibilities of constructing new integrable models. In particular, the method is not
restricted to certain (low) dimensions, as we have demonstrated in sections 3 and 5.5. We have
also indicated the possibility of infinite sets of covariantly constants-forms withs > 1, which
still has to be explored.

The question remains how our approach is related to various other characterizations
of completely integrable systems. If a system with a Lax pair is given, this defines an



Bi-differential calculi and integrable models 973

operatorDd. The problem is then to find another linearly independent operatorDδ such
thatD2

δ = 0 = DdDδ +DδDd. The existence of such aDδ is not guaranteed, however, and
may depend on the choice of Lax pair.

Over the years several deep insights into soliton equations and integrable models
have been achieved, in particular the AKNS scheme [30], ther-matrix [31] and the bi-
Hamiltonian formalism [32], Hirota’s method [33], Sato’s theory [34], and relations with
infinite-dimensional Lie algebras [35]. To this collection of powerful approaches to the
understanding and classification of soliton equations and integrable models, our work adds
a new one which is technically quite simple and which is directly related to the physically
important concept of conserved currents and charges. Besides the further clarification of
relations with the approaches just mentioned, a generalization of the scheme presented in this
work to supersymmetric models should be of interest.
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