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Abstract. The existence of an infinite set of conserved currents in completely integrable classical
models, including chiral and Toda models as well as the KP and self-dual Yang—Mills equations,
is traced back to a simple construction of an infinite chain of closed (respectively, covariantly

constant) 1-forms in a (gauged) bi-differential calculus. The latter consists of a differential algebra
on which two differential maps act. In a gauged bi-differential calculus these maps are extended
to flat covariant derivatives.

1. Introduction

Soliton equations and other completely integrable models are distinguished by the existence
of an infinite set of conservation laws. In particular, for two-dimensional (principal) chiral
or o-models an infinite set of nonlocal conserved currents have been found [1] and later a
simple iterative construction has been presented [2]. The latter construction was formulated
in terms of differential forms and then generalized to noncommutative differential calculi on
commutative algebras by the present authors [3, 4], and moreover to differential calculi on
noncommutative algebras [5]. As a particular example, this generalization includes the case
of the nonlinear Toda lattice and the corresponding nonlocal conserved charges coincide with
those which had been obtained earlier in a different way [6]. The question then arose whether
other soliton models, like KdV, also fit into this scheme. In this work we present a somewhat
radical abstraction of the above-mentioned iterative construction of conserved currents for
chiral models which indeed applies to many of the known soliton equations and integrable
models. It severely deviates, however, from our previous approach [3, 4] which made use of
a generalized Hodge operator on noncommutative differential calculi. Our present approach
is based on differential calculi with two differential maps (which are analogues of the exterior
derivative of the differential calculus on manifolds). We are thus dealing béitlifferential

calculi, a structure which we introduce in section 2. Section 3 contains as an example a
generalization of Plebanski’s first heavenly equation [7, 8]. Most interesting examples require
a ‘gauged bi-differential calculus’ which we consider in section 4. Several integrable models
which fitinto this framework are presented in section 5. Some concluding remarks are collected
in section 6.
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2. Bi-differential calculi and an iterative construction of closed forms

Let. A be an associative algebrat.gfaded algebra over is aNp-graded associative algebra
QA = @@0 Q" (A) whereQ®(A) = A. Furthermore, we assume that.4) has a unit 1
suchthat b = wll = w forall w € Q(A). A differential calculug2(A), d) over.A consists
of a graded algebr (A) over.4 and a linear map dQ"(A4) — Q"*1(A) with the properties

d>=0 (2.1)

d(ww) = (dw)w’ + (=1)"w dw’ (2.2)
wherew € Q"(A) andw’ € Q(A). The identity 11= 1 then implies dl= 0. A triple
(22(A), d, §) consisting of a graded algebga(A) over A and two maps & : Q"(A4) —
Q*1(A) with the above properties and

dd+ds =0 (2.3)
we call abi-differential calculus
Example. The following sets up a (somewhat restricted) framework for constructing bi-
differential calculi. All the examples which we encounter in the following sections actually
fit into this scheme. Lej#, u = 1, ..., n, generate2!(A) as a leftA-module. This requires

commutation rules fof* and the elements of. Assumings#&¥ +&£VE# = 0, products of the
&" then generat€ (A) as a left4-module. LetM,,, N, be derivations4 — A. We define

df = M, f)E" §f = (Nuf)E" (2.4)
and
d(fer.. &) = df)gh ... &M S(fEM...E8) = (8N)E"...& (2.5)
(r=1,...,n). Then we have
=0 [M,, M]=0 (2.6)
82=0<=[N,.,N]=0 (2.7)
ds+8d=0<= [M,,N,]=[M,, N,]. (2.8)

Up to this point we have not had to specify the commutation rules betweejt‘thad the
elements ofd. The graded Leibniz rule (2.2) holds, in particulargf[ f] = Oforall f € A
andu=1,...,n.

Let(2(A), d, §) be a bi-differential calculus such that, for soime 1, thesth cohomology
H; (Q2(A)) is trivial, so that alB-closeds-forms ares-exact. Suppose there is a (nonvanishing)
x© e Q*~1(A) with

§x@ =o. (2.9)
Let us define

JO =dy©, (2.10)
Then

IV = —dsx©@ =0 (2.11)
so that

JO = 5@ (2.12)

T We consider algebras ov&ror C. A linear map is then linear oveR, respectivelyC.
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Figure 1. The infinite tower o-closeds-forms J .

with somey @ e Q*~1(A4). Now let J be anys-form which satisfies

§J™ =0 J = dy =D, (2.13)
Then

Jm = gy m (2.14)
with somey ™ e Q*~1(A). Hence

J D — gy (m (2.15)
is §-closed:

§JMY — _dsx ™ = —dJ™ = —d?x ™D = 0. (2.16)

In this way we obtain an infinite towert &fcloseds-forms.J ™ and elementg ™ € Q*~1(A)
satisfying
8X(m+1) — dX(m) (217)
(see figure 1).
Introducing¥

o0

x =y amx™ (2.18)
m=0
with a parametek, the set of equations (2.17) implies
Sx = Ady. (2.19)

Conversely, if this equation holds for al] we recover (2.17).

Remarks.

(1) Let x© e @°~1(A), s > 1, such thaty©@ = sa with somea € Q°~?(A). This leads to
JOV =dy©@ = dsa = —8 da and thusy® = —da (up to addition of somg € Q*~1(A)
with 88 = 0, see the following remark). Henc&? = 0, and the construction df

closeds-forms breaks down at the level = 2. In order to have a chance that the

iteration procedure produces something nontrivial at arbitrarily high levegtss therefore
necessary that the cohomolo@j‘l(sz (A)) is not trivial and the iteration procedure must
start with somey @ e Q*~1(A4) which iss-closed, but nog-exact.

t Of course, in certain examples this construction may lead to something trivial. This happens, in particular, if d and
§ are linearly dependent, so that the bi-differential calculus reduces to a differential calculus. See also the first remark

below.
¥ In general, we can only expegtto exist as a formal power seriesin
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(2) 8J™ =0, m > 0, determinesg ™ via (2.14) only up to addition of somg® with

§x9 = 0. Butx\? then plays the same role a&”! Hence, this freedom corresponds

to a new chain starting at theth level. If there is only a single linearly independent

x @ e @71(A) with §x©@ = 0 (but x @ nots-exact), this means that™ is determined

only up to addition of some linear combination of th€’ with 1 < ¢ < m. In this case,

we are losing nothing by simply ignoring the above freedom in the choigé’ef If there

are several linearly independent choices & (with §x©@ = 0, but x @ not §-exact),

we have to elaborate the sequeng&s, m > 0, for all of these choices (respectively, for

their general linear combination). Again, the freedom in the choige’®f, m > 0, then

does not lead to anything new.
(3) In the definition of a bi-differential calculus we have assumed that both differential
maps d and act on the same grading 6f(4). The above iteration procedure works,
however, as well if they operate on different gradings. Then we have to start with a
bi-graded algebr& (A) = @,¢,,0 2" (A) with Q2°(4) = A, and differential maps
d: Q" (A) — Q(A), 8 Q0 (A) — QL(A) satisfying (2.3).
In classical differential geometry, bi-differential calculi appeared under the danige
complexor bicomplex(see [9], for example). In particular, given a differentiable
fibre bundle, a splitting of the exterior derivative on the bundle space into vertical and
horizontalt parts leads to a bicomplex. In this way, bicomplexes also appeared in the
context of symmetries and conservation laws of Euler—Lagrange systems (see [10], for
example). The way in which this paper relates bicomplexes and conservation laws,
however, is different and seems not to have been anticipated in the literature. In general,
the maps ds§ of a bicomplex are not required to be (graded) derivations. In fact, the above
iterative construction of-closed forms does not make use of the (graded) Leibniz rule.
(5) The condition (2.9) can be weakened &y = 0. Setting/ @ = §x©, this somehow

improves the left end of figure 1.
(6) If H{(Q2(A)) # {0}, the iterative construction may still work, for some®, though

perhaps only up to some level where we encounter &closed formJ ™ which is not

5-exact.

4

~

Inthis work we will concentrate onthe case- 1wherey € A. Sinces-form conservation
laws withs > 1 are of some interest in the theory of differential systems and physical field
theories (see [11] and the references therein), we believe that the above generalization has
some potential.

3. Example: a generalization of Plebanski’s first heavenly equation

Let A be the algebra of smooth functions of coordinat¢s © = 1,...,2n, and y4,

a=1,...,2m, and letd, andd, denote the partial derivatives with respectxto and y*,
respectively. We define

8f = (3 f)dx" (3.1)
where theSx* are ordinary differentials, which commute with functions, and

df = (M, f)sx" (3.2)
where

M, = M, (3.3)

T Horizontal with respect to a (local) cross section or flat connection.
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with functionsMy;. Now (8 d + d3) f = O (for all f € .A) meansi(M,,6x*) = 0 and thus

My =3, W* (3.4)
with We € A. Furthermore, 8i= 0 is satisfied if M,,, M,] = 0 which leads to

(0, W)(0,0,W") — (3, W) (8,9, W") = 0. (3.5)
Let us now consider the special case where

W = w9, (3.6)
with a functionQ and constante® = —w"*t. Then

@™ 9,{(8,,0.92)(3,0,2)} = 0. (3.7)
If (w™) is invertible, this leads to

@ (0,0,2)(0,0,RQ) = @y, (3.8)
wherew,,, are arbitrary functions of*, satisfyingw,, = —a,,. Furthermore, the 2-form

@ = 3@,,0x"8x" (3.9)

is 6-closed. Let us také,, to be invertible. Then, by the Darboux theorem, there are local
coordinates* such that

. O
(w;w) = <_In 0 ) (310)
wherel, is then x n unit matrix. (3.8) generalizes PlebansHKiist heavenly equatiofy] to
which it reduces fom = n = 1:
Qg — 22, =1 (3.12)

wherex* = (¢,x) andy* = (g, p). This is a gauge-reduced form of the self-dual gravity
equation [7]F. The above generalization of Plebanski’'s equation has appeared already in [8].
For f, ¢ € A we introduce the Poisson bracket

{f, 8} = (3. 1) (8). (3.12)
Then
df = {f,Q} (892,89} = 2&. (3.13)

The initial conditionsx @ = 0 for the iterative construction @t-closed 1-forms in the
preceding section means thdf e A does not depend ort*, hencey © = x @ (y9).

From (2.18) and (2.19) we get

J = gy = (=D Q1. (3.14)
In particular, this leads to

xP =, (3.15)
(modulo addition of a function which only depends ), so that

JP =dy® = {({x©, Q},sQ}. (3.16)
Remark. Let ¥ be constant and antisymmetric. We defiig’” = e*'J™ where

Jm = Jmsxt. Now §J™ = 0 becomes),J™* = 0 which is a familiar form of a
conservation law. See also [12,13] for related work.

t If ?? has an inversey,, the latter defines a symplectic 2-form atdl= W39, is the Hamiltonian vector field
associated with the Hamiltonign.

t A solution© determines a Riemannian metric with line elemest & Qpdedp + Qg drdg + Q,,dxdp +
Q4 dx dg.
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4. Gauging bi-differential calculi

Let (©2(A), d, §) be a bi-differential calculus, andl, B two N x N-matrices of 1-forms (i.e.,

the entries are elements @f(A4)). We introduce two operators (or covariant derivatives)
Dg=d+A Ds=58+B (4.1)

which act from the left oV x N-matrices with entries if2 (A). The latter form a graded left
A-moduleM = P, o M". Then

Di=0<= Fj[A]=dA+AA=0 (4.2)
D?=0<= F;|[B]=8B+BB =0 (4.3)
DyDs + DsDyg=0<+<= dB+8A+BA+AB =0. (4.4)

These conditions are sufficient for a generalization of the construction presented in section 2.
If they are satisfied, we speak ofjauged bi-differential calculus
Suppose there is a (nonvanishindy e M*~1 with

Dsx© =0. (4.5)
Then

JO = Dyx© (4.6)
is Ds-closed, i.e.

DsJ® = —DyDsx© = 0. 4.7
If every Ds-closed element aM® is Ds-exact, then

JO = Dy ® (4.8)
with somex® e M*~1. Now letJ™ e M* satisfy

DsJ™ =0 J™ = Dyy ™D, (4.9)
Then

J = Dy m (4.10)

with somey ™ e M*~* (which is determined only up to addition of sorfes M*~* with
D;sB = 0), and

J(m+1) — DdX(m) (411)
is alsoDs-closed:
DsJ"™D = —DyDsx™ = —DgJ ™ = —Dix " =0. (4.12)

In this way we obtain an infinite tower (see figure 2)§-closed matriced ™ of s-forms
and elementg ™ e M*~! which satisfy

Dyx "V = Dgx™. (4.13)
In terms of
o0
x= Ay (4.14)
m=0

with a parametek, the set of equations (4.13) leads to
Dsx = ADgx. (4.15)

Conversely, if the last equation holds for aJlwe recover (4.13).
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Figure 2. The infinite tower ofDs-closed (matrices of)-forms .J (™.

Of particular interest is the case= 1, as we will demonstrate in section 5. The above
procedure works, however, irrespective of this restriction (provided themBgscéoseds-form
and the cohomology condition is satisfied). It thus opens new possibilities which still have
to be explored. The remarks in section 2 apply also, with obvious alterations, to the gauged
iteration procedure.

If B =0, the conditions (4.2)—(4.4) become

F4[A] =0 SA =0. (4.16)
There are two obvious ways to further reduce these equations.

(1) We can solveég[A] = 0 by setting

A=gtdg (4.17)
with an invertibleN x N matrix g with entries in4. Then the remaining equation reads
s(g7tdg)=0 (4.18)
which resembles the field equation of principal chiral models—see also the following
section.
(2) We can solvé A = 0 via
A=5¢ (4.19)
with a matrix¢. Then we are left with the equation
d(8¢) + (8¢)% = 0. (4.20)

This generalizes the so-called ‘pseudodual chiral models’ (cf [14], see also [15, 16]).

5. Gauged bi-differential calculi and integrable models

In this section we present a collection of integrable models which arise from gauged bi-
differential calculi. As a consequence, they possess an infinite tower of ‘conserved currents’
in the sense obD;-closed 1-forms. For some well known integrable models, like principal
chiral models, the KP equation and the nonlinear Toda lattice, we show that these reproduce
known sets of conserved currents and conserved charges. Moreover, in section 5.5 we present a
set of equations inri2dimensions which generalize the four-dimensional self-dual Yang—Mills
equation and which are integrable in the sense of admitting a gauged bi-differential calculus
formulation.
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5.1. Chiral models

(1) Let A = C*(R?) be the commutative algebra of smooth functions of coordinatesand
8 the ordinary exterior derivative acting on the algefr@) of differential forms oriR2. Then

5f = fidx + f,8t VfeA (5.1)

where f, and f; denote the partial derivatives ¢gf with respect tor andz, respectively. As

a consequence of the Poinedemma, every-closed 1-form igs-exact. An extension of this
differential calculus to a bi-differential calculus is obtained by defining another differential
map d via

df = f,éx + fi8t d(f8x +hér) = (df)dx + (dh)sr. (5.2)
Indeed, we have

AdSf = (fix — fr)8t6x = —8df (5.3)

Pf = (fix — fu)dtéx =0 (5.4)
and d also satisfies the graded Leibniz rule (2.2). N@pA] = 0 is solved by

A=gtdg =g tgdx+g g8t (5.5)

with an invertibleN x N-matrixg with entriesind. With B = 0, the remaining condition (4.4)
for a gauged bi-differential calculusdg®t = 0 which turns out to be equivalent to the principal
chiral model equation

(878 = (g7 g0)x- (5.6)

It has the form of a conservation law. More generally,= O for a 1-formJ = Jodt + J18x
is equivalent to the conservation laly, = Jo,. HenceQ = ft:mnst J is conserved (if/y
vanishes sufficiently fast at spatial infinity). From (4.10) we get

o0

J =Y "n"J" = Doy =M+ g rgx)8x + (X + g g)8t]  (5.7)

m=1
andsJ = 0 leads to
e+ 878008 = (e + 88 ) (5.8)
Equation (4.13) takes the form

X =A0 gl e) e =A06+ g ). (5.9)
Inserting (4.14) withy© = I, the N x N unit matrixt, in the last equation, we obtain the
conserved charges

0w = f g lg,bx (5.10)
t=const

1 _
0? = / P+ g g x )sx

=/ (glgﬁglgr/ glg;Sx’>8x (5.11)
t=const

and so forth. In this way one recovers the infinite tower of nonlocal conserved charges for
two-dimensional principal chiral models [2].

t This satisfies x @ = 0. The most general solution &% (¥ = 0is theN x N matrix where the entries are arbitrary
constants. Instead of th@ obtained from the initial data @ = I, we then simply ge multiplied from the right
by this generalV x N matrix.
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(2) Let A = C*(R®) with coordinates, x, y. Regardingr as a parameter, the ordinary
calculus of differential forms on the algebra of smooth functionsoidy induces a differential
calculus(£2(A), 8) such that

8f = fidt + f,8y. (5.12)
Now

df = f.8r + fi8y d(fdt + héy) = (df)dr + (dh)dy (5.13)
defines a map d satisfying the graded Leibniz rufe=t0 and & = —8d. With A = g~ 1dg
we haveFy[A] = 0, and (withB = 0) the conditiorSA = 0 becomes

(g% = (g7 180y (5.14)

From §(dx + Ax) = 0 (which is an integrability condition of (4.15)), one obtains the
conservation law

G+ 878001 = (X)x + (871 8x XDy (5.15)
which leads to the conserved quantity
0= (e + g gix)8x8y (5.16)

t=const

(assuming thag —1g, and x, vanish sufficiently fast at spatial infinity). Furthermore, (4.15)
takes the fornd y = A(d + A)x which leads to

X =206+ 8718 x) Xy =200+ 8 80 (5.17)
Using (4.14) withy @ = I, the N x N unit matrix, we obtain the conserved charges
oW = f g gidxdy (5.18)
t=const
y
0® = / (g‘lgx +g e / g‘lgﬂ?y’> 8x8y (5.19)
t=const

and so forth.

5.2. Toda models

(1) Let .4 be the algebra of functions ofk, S, S~ which are smooth in and a formal power
series in the shift operator

Sk = fin (5.20)

and its inverseS~!. k has values irZ and we introduced the notatiofi(z, S, S™%) =
f(t, k, S, S1). Because of the relation$f, = fi+1S andS—1f, = fi_1S7?, the algebra
A is noncommutative. We define a bi-differential calculus odera

8f = for+[S, fl&  df=[S7" flot — f& (5.21)
where(§1)2 = 0 = £2, &5t +81& = 0 andf = df/dt. 8t andé commute with all elements of
A. The action off extends to 1-forms via

3(f8t +h&) = (6f)dt + (8h)& (5.22)
and correspondingly for d. Indeed,
&f = —df)g+d[s™, f1r = —[S7%, flsrs —[S" flssr =0 (5.23)

dsf = (df)sr +d[S, f16 = — fest +[S7L[S, fl16t&
= fote —[S,[S7L, fll&st = —5df (5.24)



966 A Dimakis and F Miller-Hoissen

and similar calculations demonstrate that the rules of bi-differential calculus are satisfied. Let

A =edde = (1% — 1)SI5r — g (5.25)
with a functiong, (1) = ¢ (¢, k) andg; = dq,/9t. ThenFy4[A] = O and, using
[S, (e-17% — 1)S7Y] =[S, el17%] 5§71 = (gl — 1oy g g1 (5.26)
we recover fron$ A = 0 (thus settingd = 0) the nonlinear Toda lattice equation [17]

G = 10 gk (5.27)

Equation (4.15) is equivalent to the system

Xk = MEPTTE g — x) ST (5.28)

Xert — Xk = =M+ @ex) STt (5.29)
which leads to

Xke1 = Xk = —Agrxa ST+ AP — €1 1) S (5.30)
Inserting

o0
=Y o amgmsT (5.31)
m=0

with ¥©@ = 1 in the last equation leads to

X — i = —du (5.32)
and

A = = —qg Y+ 7P — e g P (5.33)
form > 1. Hence

i = Z g (5.34)

j=—o00

(provided that the infinite sum on the rhs exists) and

W= Z( g+ P e g ) (5.35)

j=—00

form > 1. In particular,

k=1 j-=1 k—1
72 = Z (g0 +1—e i)y = Y N gig+ Y (L—e ), (5.36)
j=—00 j=—o0l=—00 j=—00
For a 1-formJ = Jost + J1S& the conditionsJ = O reads/y = S(Jo) — Jo = 9+Jo
where the rhs is the discrete forward derivative/gf. The latter equation is a conservation
law. Indeed, for

0= J= 3" Ju (5.37)
t=const ——00
where the last equality defines the integral, we have
d
—0= (0+J0)SE =0 (5.38)
dt t=const

t Settingy = [ Jo dr (ordinary integration with respect ty, one easily verifies that/ = 0 impliesJ = §x, so that
§-closed 1-forms aré-exact.
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if Jox vanishes sufficiently fast fdr — +o0. UsingJ ™ = J s~ and (4.10), we find

Q(m) :/ j(m) :/ 8)2(”1)
t=const t=const

oo
= Y ax" N+ gD - e a2 (5.39)
k=—00

which, together with (5.35), allows the recursive calculation of the conserved chafges
In particular, we get

-0 =>" & (5.40)
k=—00
and
%(Q(l))Z — 0@ = % Z qkz + Z (ef1% — 1) (5.41)
k=—00 k=—o00

which are the total momentum and total energy, respectively. Proceeding further with the
iteration, one recovers the higher conserved charges of the Toda lattice as given, for example,
in [6]. For instance, introducing, = e#-1~% we find

B o) oo k-1 j-1 o0 k-1
09 == " qaXe— D> > D aqia+ Y, D (@i (Xe—D+q(X; — 1)
k=—o00 k=—00 j=—00l=—00 k=—00 j=—00
(5.42)
and after some resummations we obtain the formula
o0
—09+0W0? - 0P — 0P = 3 (G4 + u(Xi + Xus1)). (5.43)

k=—o00

Remark. Sincesk = S&, we have §k, f] = (S(f) — f)skandsf = 8¢+ (S(f) — f)8k for
functionsf (¢, k). Sincesk does not in general commute with functions, the last two equations
define a noncommutative differential calculus over the commutative algebra of functions on
R x Z [18]. There is an integral naturally associated with this calculus. It satisfies

/Zf(t,k)6k= Z £, k).
k=—o00

We refer to [19] for details. See also [3] for a different derivation of the conserved charges for
the Toda lattice in this framework.

(2) A generalization of the previous example is obtained as follows.ALls the algebra
of functions oft, x, k, S, S~ which are smooth inandx, and polynomial in the shift operators
S, §71. Again,k has values ifZ. A bi-differential calculus over is then obtained via

Sf = for+1[S, fl§  df =[S7% 1ot + f'§ (5.44)
wheref’ = df/dx. With

A=edeh = (&% —1)S 15t + ¢ & (5.45)
we haveFy[A] = 0 andéA = 0 becomes the Toda field equation

g = e _ gl (5.46)

t By using (5.33) we also hay@™ = 3 — 3

—00*
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Alternatively, we can solvéA = 0 by A = §uS~1) with a functionu(z, x, k). Then
F4[A] = O reads
W+@A+u)Au=0 (5.47)
whereAu = S(u) + S~%(u) — 2u. The latter equation has been studied in [20].
(3) Let A be asinthe previous example and consider the bi-differential calculus determined
by

Sf =[S fle—f§  df = fr+IS fl& (5.48)
With

A=Xt+(Y —1)S¢ (5.49)
whereX, Y are matrices with entries id and/ is the unit matrixA = 0 leads to

X =Y — Y1 (5.50)
and Fy[A] = 0 becomes

Ye = Vi X1 — Xi Yo (5.51)

Forx = ¢, the (transpose of the) last two equations are those of the non-Abelian Toda lattice
explored in [21], for example.

5.3. The KP equation

Let Ay = C®(R®) be the algebra of smooth functions of coordinates y, and.A the algebra
of formal power series in the partial derivatif#e = 9/9x with coefficients in4y. We define
a bi-differential calculus oved via

df =[8, — 3, flr +[30, — 302 fl&

= (ft - fxxx - 3frx8x - 3fxa§)r + %(fy - fxx - 2frax)§ (552)

8f =130y + 307, flt +[0x, f16 = 3(fy + fur + 2(:000T + fi&. (5.53)
For a gauge potential € Q1(.A) we solve the equatiodd = 0 by

A=6v= %(vy + v, +20,0,)T U & (5.54)
with v € Ag. ThenF4[ A] = 0 takes the form

Vg — %vxxxx + 30, Uy — %vyy =0. (5.55)
Differentiation with respect te and substitutiom = —v, leads to the KP equation

(u; — %umx — Suuy ) — %u_,,y =0 (5.56)

in the form considered, for example, in [22].
Let us now turn to the conservation laws. First we note that the integrability condition

8Dgx = 0 of (4.15) fory € M can be written in the form of a conservation law,

(Xx)t = %(Xy + 2UxX)y + (%Xxxx - gva - gvax)x- (557)
Note that terms proportional @ cancel each other in the evaluationsdy y . Moreover, in
the case under consideration (4.15) consists of the two equations

Xx = )\(%Xy - %Xxx T Ur X — XxOx) (558)
and
Xy * Xox 20 = AEO0 — Xevx — BlaxOr — 3x:02) + Uy X + Ve X + 200 X + 20, X 0:].

(5.59)
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Inserting
n=0
we get
A
X0x = E(Xo,y — XO,xx + 2vx XO) (561)
X0,y ¥ Xoxx = )‘[%(XOJ - XO,xxx) +tvyx0t vix X0t vaXO,x]- (562)
The transformation
o0
Xo=€¢  p=3 g™ (5.63)
m=0
(which setsy\” = 1) in the first of these equations yields
A A2
Oy = E((py - (pxx) - E((px)z —u (564)
which in turn leads to
O — _y (5.65)
= 35, + Ju, (5.60)
P = _%”2 — Flax + Glty — thax_zuw (5.67)
)(63) = —%ua;luy — ‘-118;1(142)_\, + %(uz)x — %8;3uyyy + 'g‘a;luyy — guxy + %u“x (5.68)

and so forth, wherg_* formally indicates an integration with respecttoThese are conserved
densities of the KP equation (cf [22]1). Indeed, in termg péquation (5.62) reads

X

3 3 3
o = [Z(‘” - U)lv + [wxx to vt Ex(mz} — 3,0, + 3 ()% + 2% (00)2
(5.69)

Differentiation with respect t@ now leads to a conservation law for.
We still have to check that-closed 1-forms aré-exact. §J = 0 with J = Jgt + J1&
means/o, = 3(Jy, + Juu +2J1,9,). ThenJ = §(3;1J0).

5.4. The sine—Gordon and Liouville equation

Let A = C*(R?) be the commutative algebra of smooth functions of coordinatasd v,
ands the ordinary exterior derivative acting on the alge@r@4) of differential forms oriR?.
Then

8f = fubu+ f,8v Vie A (5.70)

where f, and f, denote the partial derivatives gf with respect tou and v, respectively.
Another differential map d is then given by

df = —f,8u+ f,8v d(féu + hév) = (df)éu + (dh)sv (5.71)
and(2(A), d, §) becomes a bi-differential calculus. It is convenient to introduce the 1-forms
o = ASu + 178 B = —Adu + 1" tsv (5.72)

T (5.65)—(5.68) correspond to equations (4)t%4.157) in [22]. (4.1%) and (4.1%) contain misprints, however.
The correct expressions are obtained from the appendix in [22] together witl4(44.4).
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with a parametek. They satisfy T

(6 =—(df)p 6B =—-Wdf)a aff = 26udv. (5.73)
Let X,,a =1, 2, 3, be a representation of(2):
[X1, X2] = X3 [X1, X3] = X2 [X2, X3] = X1. (5.74)
(1) Now we chooset = A X, with
1_ ¢ 2 _1 3_  (ain?
At = (cosz) B A% = 38¢ A® = (sm Z)a. (5.75)

Then F4[A] = 0 is equivalent to the sine—Gordon equation
Puv = Sin(ﬁ. (576)
Similarly, let B = B*X, where
1_ ¢ 2 _ 1 3_ (cin?
B = (cosz)a B® = 3dop B° = (sm 2>ﬁ. (5.77)

Again, Fs[ B] = Ois equivalentto the above sine—Gordon equation. Moreover, (4.4) is satisfied.
Let us now consider the following nonlinear realizatiors4R):

- . a ~ ad ~ ad
X1=—25|n£— Xo=-2— X3=—Zcosz—. (5.78)
2 9y Ay 29y
To start the iteration procedure of section 4, we need spme x©@ with Dsyy = 0. With
B = —B“X,, this condition become®) + By = 0, respectively

Y@ Vo9
+dp = — —o — — Sin—
Sy +do 25|n20032a ZCoszstﬂ
+ 2 -
_2sin” ¢6u+xsin¢2¢8v. (5.79)

Acting with § on this equation leads to

§dp = (8¢ +dp) (cos% cos%a + sin% sin gﬂ> = 2singdudv (5.80)

which is the sine—Gordon equation (5.76) gorln the same way, acting with d on (5.79) leads
to the sine—Gordon equation f¢r, i.e., v, = siny. Decomposed in the basis, sv, (5.79)
becomes

W — @)y =2Asinl/f;¢ (¢+<p)v:§sinw;(p (5.81)
which is a well-known Bicklund transformation for the sine—Gordon equation (see [23], for
example)t.

(2) Now we set

Al =8¢ A? = eu A3 =¢eB. (5.82)
ThenFy4[A] = O with A = A“X,, is equivalent to the Liouville equation

Puy = €. (5.83)
Also Fs[B] = O with B = B*X, and

Bl=dgp B?>=¢B B®=¢€‘a (5.84)

T Actually, (5.72) is the most general solution of these equations.
T The sine—Gordon equation also appeared in treatments 8ttt andO (3) chiral models [15,24]. Our approach
above is not related to the discussion of the chiral model in section 5.1 in such a way.



Bi-differential calculi and integrable models 971

is equivalent to (5.83). Let us now consider the following nonlinear realizatioh(¥:

X1 = % X, = COShl//% X3 = sinmp%. (5.85)
With B = —B“X,, the equatiody + By = 0 becomes

8y — dp = €?(sinhyra + coshyB). (5.86)
Acting with § on this equation yields

8dp = —e* (8¢ — dy)(coshyra + sinhyB) = 2€¢5usv (5.87)

which reproduces the Liouville equation (5.83). Acting with d on (5.86) lead$io ¢ O
and thusy,,, = 0. Decomposition of (5.86) yields

W+ @)y = —re"7 W — @), =27tV (5.88)

which is a well known Bcklund transformation for the Liouville equation (cf [23], for
example).

There is a way to construct an infinite set of conserved currents from a given conservation
law (like energy conservation) with the help of thédklund transformation (see [25], for
example). So far we have not been able to establish a more direct realization of such conserved
quantities within our framework.

5.5. Self-dual Yang—Mills equations2n dimensions

Let (2(A), d)_and(s_z(A), d) be two differential calculi overd such that there is a bijection
kK QA — Q(A) with

k(ww') = k(w)k(w) Yw, w’ € Q(A) (5.89)

andk restricted tod is the identity. Theld = k1o dox extendg$2(A), d) to a bi-differential
calculus, provided thatsd+ § d = 0 holds.

Now we choosed as the algebra of smooth functions of coordinatésy = 1, ..., n,
andx”, o =1,...,n. Let (Q(A), 8) denote the ordinary differential calculus ovér We
introduce an invertibled-linear mapx : ©2(A4) — Q2(A) via

*(dx* dx") = —dx* dx” (5.90)

*(dx™ dx”) = —dx” dx” (5.91)

*(dx" dx”) = K"&/{‘_’p dx” dx® (5.92)
where(k*;) is an invertible matrix of constants with inverge’,,). Let

A=A, dx" + B; dx” (5.93)

be a gauge potentiaM x N-matrix of 1-forms) with curvature
Fa[A] =dA +AA = %FM dx” dx” + %Fﬂ\'} dx” dx” + Fup dx* dx” (5.94)
on which we impose the following generalized self-dual Yang—Mills equation:

F4[A] = «F4[A] (5.95)
which is equivalent to
F,uu =0= F[“j F,uﬁl(ﬁv = UﬁKﬁM. (596)

Let (2(A), d) be the differential calculus oved which is obtained from the ordinary
differential calculus by regarding the coordinatésas parameters:

df = (9, f) dx". (5.97)
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Correspondingly, letQ(A), d) be the calculus obtained from the ordinary one by regarding
the coordinates” as parameters:

df = (8 f) dx*. (5.98)
Then$2(A) is the skew tensor product 6f(A) and2(A), and

d=d+d. (5.99)
Furthermore, we define

Sxt =kl dxV = K_l(ax’_‘) (5.100)
and

B = Bpx" = kX (B dx?). (5.101)
Now (5.95) is found to be equivalent to

Fy4[A] = 0 = F;[B] dB+8A+BA+AB =0 (5.102)

which are the conditions (4.2)—(4.4). By a gauge transformation, we can achie\& th&

and thusD; = §. SinceH(Q(A)) is trivial, the iterative construction @fclosed 1-forms in
section 4 works. As a special case we recover the self-dual Yang—Mills equation in four real
dimensions, see below. We have generalized this example to a set of integrable equations in
2n dimensions. Equations of this kind have also been considered in [26].

Example. Let A = C*(C?). In terms of complex coordinates z with complex conjugates
¥, z, we introduce a bi-differential calculus via

§f = f38y + fz0z df = f,8z — f:85. (5.103)
With A = g~ dg we haveF4[A] = 0, and§ A = 0 takes the form
(g5 + (g ') =0 (5.104)

which is known to be equivalent to the self-dual Yang—Mills equation [27]. Indeed, in this case
the mapx defined above coincides with the Euclidean Hodge operator. The construction of
conservation laws in the form given in [2] was carried over to the self-dual Yang—Mills equation
in [28] and is easily recovered in our framework (see also [29] for a different approach).

6. Conclusions

We have shown that, under certain conditions, a gauged bi-differential calculus (which has
two flat covariant derivatives) leads to an infinite set of covariantly constant 1-forms. In
many integrable models, these are realized by conserved currents, as we have demonstrated in
particular for (principal) chiral models, some Toda models, the KP equation and the self-dual
Yang—Mills equation. Other models are obtained via (dimensional) reduction of bi-differential
calculi. For example, the KdV equation is a reduction of the KP equation and there is a
corresponding reduction of the gauged bi-differential calculus which we associated with the
KP equation. Many more examples are expected to fit into this scheme. Moreover, the latter
leads to possibilities of constructing new integrable models. In particular, the method is not
restricted to certain (low) dimensions, as we have demonstrated in sections 3 and 5.5. We have
also indicated the possibility of infinite sets of covariantly constafiorms withs > 1, which
still has to be explored.

The question remains how our approach is related to various other characterizations
of completely integrable systems. If a system with a Lax pair is given, this defines an
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operatorDyq. The problem is then to find another linearly independent operatosuch
that D? = 0 = Dy4D; + DsDy. The existence of such B; is not guaranteed, however, and
may depend on the choice of Lax pair.

Over the years several deep insights into soliton equations and integrable models
have been achieved, in particular the AKNS scheme [30],rthaeatrix [31] and the bi-
Hamiltonian formalism [32], Hirota’s method [33], Sato’s theory [34], and relations with
infinite-dimensional Lie algebras [35]. To this collection of powerful approaches to the
understanding and classification of soliton equations and integrable models, our work adds
a new one which is technically quite simple and which is directly related to the physically
important concept of conserved currents and charges. Besides the further clarification of
relations with the approaches just mentioned, a generalization of the scheme presented in this
work to supersymmetric models should be of interest.
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